

COMPREHENSIVE SIMULATION AND VALIDATION OF GREEN HYDROGEN VALUE CHAIN IN THE KONSTANZE PROJECT: FROM PRODUCTION TO END-USE

F. Mustapha, B. Groß, S, Fleming, M, Byrne, F. Kruchten, and M. Reinstädtler

Gefördert durch:

Decarbonising Industry

Green Hydrogen

aufgrund eines Beschlusses des Deutschen Bundestages

KoNSTanZE project

KoNSTanZE test field: BOSCH credit

BOSCH

Methodology

Modelling the components considering boundary conditions

Programming the management system and operating conditions

Validation process through the real data

Function

Increases hydrogen pressure from low pressure (**40 bars**) storage to mid-pressure vessels (**500 bars**). Store hydrogen at different pressure levels for later use.

Modelling Approach

Model the materials, efficiency, **thermodynamic** properties (**temperature**, **pressure**), and the thermal model of every tank including conduction and convection

Function

- Distributes hydrogen to the hardening shop and refuelling station According to the **SAE protocol**.
- Vehicles operating in the plant, powered by hydrogen fuel.
- Uses continuously hydrogen for industrial processes.

Modelling Approach

- Simulate hydrogen flow dynamics and pressure losses during distribution, considering thermodynamics and fluid behaviour to ensure efficiency in distribution.
- Simulate onboard hydrogen storage and thermodynamics during operation, including the refuelling time.
- Modelled as a constant consumer with a constant mass flow rate out, that comes from the low-pressure vessel directly.

Methodology: Operational Conditions

Methodology: Operational Conditions

Methodology: Validation Process

Modelling the components considering boundary conditions

Programming the management system and operating conditions

Validation process through the real data

Methodology: **Validation Process**

Validation process through the real data

Selected Validation Data

Mass of H₂ **Produced**

Energy Consumed

Pressure

Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Correlation Coefficient (r)

$$\mathbf{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \qquad \mathbf{r} = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(\hat{y}_i - \overline{\hat{y}})}{\sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2} \sqrt{\sum_{i=1}^{n} (\hat{y}_i - \overline{\hat{y}})^2}} \qquad \mathbf{R^2} = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

R-squared (R²)

$$\mathbf{R^2} = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

Methodology: Validation Process

Produced

Energy Consumed

The simulation model accurately predicts hydrogen mass produced and associated energy consumption, showing high reliability in real-world applications.

Component	Metrics	MSE	r	\mathbb{R}^2
Electrolyser	Mass of H ₂	13.7901	0.99981	0.99495
	Energy consumed	5699.4237	0.99979	0.99945

Results

Component \mathbb{R}^2 **Metrics MSE Mid-Pressure vessel** 317.1198 0.99712 0.92749 **Pressure** Mid-Pressure vessel 0.99291 33.1112 0.99869

 Pressure Deviation in Mid-Pressure vessel 1: A higher Mean Squared Error (MSE) was noted for mid-pressure vessel 1 due to an initial pressure discrepancy caused by real data stops in filling. Despite this, the model's pressure predictions remain robust.

•Pressure Prediction Accuracy: The model demonstrates high correlation for pressure variables, especially with mid-pressure vessel 2, indicating strong predictive accuracy in pressure behaviors.

Vehicle

Vehicle Pressure Offset:

The model has an MSE of 138.5319, largely due to a consistent 10-bar offset in initial vehicle vessel pressure. This impacts the absolute error but shows good alignment with real data trends.

The model still provides a reasonable approximation, particularly for the pressure ramp that is managed by the SAE protocol.

- •Simulation Model: A detailed simulation model was developed in MATLAB Simulink, covering **Key** Components Simulated, focusing on thermodynamics and operational functions.
- •Validation Methods: For model validation, real-time data monitoring was used, with performance metrics including Mean Squared Error (MSE), correlation coefficient (r), and coefficient of determination (R²), confirming high accuracy in hydrogen generationmass, energy utilisation, and pressure stability.
- •Observed Inconsistencies: Minor inconsistencies were found, particularly in refueling pressure variation for vehicles; however, these were minimal and did not significantly impact model evaluation.

- •Long-term Potential: The validated model serves as a versatile platform for optimizing the green hydrogen value chain, supporting scenario analysis and operational adjustments.
- •Future Research Directions: Future work will expand the model to include additional components like bottling filling stations and mobile refuelers, with applications in broader industrial and transportation sectors for advancing a sustainable energy mix.

HANK YOU

F. Mustapha, B. Groß, S, Fleming, M, Byrne, F. Kruchten, and M. Reinstädtler